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ABSTRACT

This thesis outlines the development, programming, and testing a logical interface

between a radar system, the AN/SPS-65(V)1, and a general-purpose reconfigurable com-

puting platform, the SRC Computer, Inc. model, the SRC-6E. To confirm the proper op-
eration of the interface and associated subcomponents, software was developed to per-

form basic radar signal processing. The interface, as proven by the signal processing re-

sults, accurately reflects radar imagery generated by the radar system when compared to
maps of the surrounding area. The research accomplished here will allow follow-on re-

search to evaluate the potential benefits reconfigurable computing platforms offer for ra-

dar signal processing.
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EXECUTIVE SUMMARY

This thesis is a part of a larger project, which is to compare radar signal process-

ing on a general-purpose computer with processing on more traditional radar systems. If

the processing speed is significantly greater on a reconfigurable computing system, this

could have significant military implications. Namely, it might be possible to replace sev-

eral, purpose-built radar processing systems with one general-purpose radar processing

system thereby saving in space and weight on military platforms.

The reconfigurable computer used contains field programmable gate arrays

(FPGA), or Programmable Logic Device, embedded in the system architecture. FPGAs

are devices which can be programmed to implement a wide variety of logic circuits.

FPGAs exhibit the benefits of customized hardware processing speeds coupled with the

ability to be reconfigured for other applications in a manner similar to loading a new pro-

gram. Given this speed and flexibility, general-purpose reconfigurable computers marry

standard general-purpose computer systems with FPGAs. The intent of these systems is

to harness the benefits of FPGAs in standard computing platforms. FPGAs have been

shown to provide significant performance speedups in signal processing tasks over tradi-

tional methods [1].

With the potential benefits of the FPGA-based processing in mind, the overall

project goal was to:

1. Develop, build, and test a physical interface required to pass data from a radar sys-
tem to a general-purpose reconfigurable computing device.

2. Develop, configure, and test the logical implementation required on the recon-
figurable computing device to connect to the interface. This step also includes
sampling and storing the data transferred across the interface.

3. Process the radar signal data for display and compare processing speeds to tradi-
tional methods.

This thesis developed software to provide a reconfigurable computing system

with data from a radar system. Also, limited radar signal processing on that data to

proved the proper operation of the interface. The thesis work culminated in a successful

xvii



test of the processed radar image of the Monterey Bay area. When compared to carto-

graphic information of Monterey Bay, the processed signal strongly correlated to map

data.

In addition to the successful testing of the logical interface, this thesis explored a

number of processing methodologies and coding complexities encountered with the re-

configurable computing platform. The se lessons learned and the suggested future work

should help streamline future work within this project.
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I. INTRODUCTION

A. PROJECT OBJECTIVE

This thesis is a part of a larger project, which is to compare radar signal process-

ing on a general-purpose computer with processing on more traditional radar systems. If

the processing speed is significantly greater on a reconfigurable computing system, this

could have significant military implications. Namely, it might be possible to replace sev-

eral, purpose-built radar processing systems with one general-purpose radar processing

system thereby saving in space and weight on military platforms.

The reconfigurable computer used contains field programmable gate arrays

(FPGA), or Programmable Logic Device, embedded in the system architecture. FPGAs

are hardware-based devices which can be programmed to implement a wide variety of

logic circuits. FPGAs exhibit the benefits of customized hardware processing speeds

coupled with the ability to be reconfigured for other applications in a manner similar to

loading a new program. Given this speed and flexibility, general-purpose reconfigurable

computers marry standard general-purpose computer systems with FPGAs. The intent is

to harness the FPGAs benefits in standard computing platforms. FPGAs have been

shown to provide significant performance speedups in signal processing tasks over tradi-

tional methods [1].

With the potential benefits of the FPGA based processing in mind, the overall

project goals were to:

1. Develop, build, and test a physical interface required to pass data from a radar sys-
tem to a general-purpose reconfigurable computing device.

2. Develop, configure, and test the logical implementation required on the recon-
figurable computing device to connect to the interface. This step also includes
sampling and storing the data transferred across the interface.

3. Process the radar signal data for display and compare processing speeds to tradi-
tional methods.



B. THESIS OBJECTIVE

The objective of this thesis was to develop, implement and test the software inter-

face between a radar system and a reconfigurable computing system. To test the inter-

face it was also necessary to perform limited radar signal processing, specifically build-

ing a range map from returned radar signals. The objective of this thesis fulfills the over-

all project goals two and a portion of goal three. Project goal one was accomplished by

the Master's work described in [2].

C. THESIS ORGANIZATION

In order to accomplish the thesis goals, it was necessary to explore the radar sys-

tem, the AN/SPS-65(V)1, and the interface used to connect to the reconfigurable com-

puting platform. This is described in Chapter II. Chapter III describes the hardware and

software environment of the reconfigurable platform used, the SRC-6E.

Moving from the physical devices used, Chapter IV is a discussionconcerning

logical interface designed to capture data presented by the physical interface to internal

components of the SRC-6E. Within the SRC-6E environment, this logical connection is

called a macro.

Chapters V and VI are a treatment on basic radar signal generation via the

AN/SPS-65(V) 1 and how the signal can be processed within the SRC-6E, respectively.

Given this base of knowledge, software to perform radar range image processing was

written, tested, and evaluated as detailed in Chapter VII. The concluding remarks, Chap-

ter VIII, highlights objectives accomplished by this thesis, some of the limitations of the

system presented, and suggest the potential direction of future research

The general flow of this document is a description of the system built and config-

ured starting with the radar system used, the physical interface built, and the SRC-6E

hardware and software configuration The next chapter describes the general characteris-

tics of the AN/SPS-65(V)l and the analog-to-digital (A/D) converters used to connect

the SRC-6E to the AN/SPS-65(V)1.
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II. THE AN/SPS-65(V)l RADAR SYSTEM AND AN OVERVIEW
OF THE A/D CONVERTER INTERFACE

A. INTRODUCTION

As mentioned in Chapter I, the AN/SPS-65(V)l was used as the radar signal

source. This chapter explores the characteristics of the AN/SPS-65(V)l necessary for

understanding subseqtent elements of this thesis, particularly the radar signal processing

choices made. Also, an overview of the A/D converter functionality and interface signals

provided to the SRC-6E are outlined in this chapter.

B. AN/SPS-65(V)1 RADAR SYSTEM FUNDAMENTALS

1. Radar Purpose and Basic Functionality

The AN/SPS-65 (V) 1 was designed to provide radar detection of moving, low fly-

ing targets via Doppler processing [3]. Doppler processing requires an analysis of the

phase component of a returned radar signal

The phase shift of the returned signal, in reference to the transmitted pulse, can be

used to determine the speed and direction of a target [4]. The time which the signal re-

turns with respect to the transmission of a radar pulse is used to determine the range of

the target. The phase and distance information is represented by two signals within the

AN/SPS-65(V)l on the I and Q channels. Each of these signals is imposed on a 30-MHz

carrier wave [3]. Also, a reference signal allows the radar system to resolve the approxi-

mate direction of the target in reference to the antenna position.

2. Radar Signals Provided to the A/D Converters

The following signals were provided to the A/D converters, with one exception as

noted below.

a. I and Q Signals

As outlined above, the I and Q signals provide the phase shift and range

information of a target. The range of a target can be extracted solely from the infornm-

tion presented in either channel.
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b. Pulse Repetition Frequency (PRF)

The transmission of a pulse through the anlenna occurs at a specific rate.

This rate is called PRF and is represented as an electrical signal within the AN/SPS-

65(V)1. The PRF signal triggers the process by which the transmission radar pulse oc-

curs. The PRF trigger signal is periodic and can be manually or automatically adjusted

during operation of the AN/SPS-65(V)1 [3]. In this analysis, the PRF rate was 3,064

pulses per second.

C. Automatic Gain Control (AGC)

The AGC signal indicates the relative strength of the received signal. The

AGC keeps the detected signal within a certain amplitude range to protect the receiving

equipment. The relative strength of amplification or attenuation is reported to the radar

signal processor via the AGC signal. This signal was provided to the A/D converters and

to the SRC-6E. The AGC signal, however, was not used in the processing of the radar

signal for this thesis, as the signal strength remained constant at all times during experi-

mentation.

d. Directional Information

The AN/SPS-65 (V) 1 also provides a reference signal which is used to de-

termine the direction of the antenna. This signal, however, was not used in the design of

the A/D converters. As a result, there is no automated manner to determine the relative

direction of the antenna at any given time. Given the objective of this thesis, this was not

a significant issue, but did limit the automated radar signal processing for this thesis to

essentially range information.

C. OVERVIEW OF THE ANALOG-TO-DIGITAL (A/D) CONVERTERS
FUNCTIONALITY

As mentioned above, the A/D converters are devices designed and built as the in-

terface between the AN/SPS-65(V)I and the SRC-6E. The A/D converters provide three

basic functions: sample the voltage levels of the analog signals from the radar; convert

the analog signals to digital; and present digitally encoded radar signals to the SRC gen-

eral-purpose I/O port. This port is described in further detail in Chapter III. The follow-

ing material is an overview of the A/D converters from [2].
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1. Operational Speed and Effects

The A/D converters require a clock source to effectively sample the 30-MHz sig-

nals coming from the radar system. This is within the capabilities of the A/D converters

which were designed to operate at 100 or 200 MHz.

2. Signal Provided to the A/D Converters from the SRC-6E

The A/D converters, however, do not provide an internal clock source. The clock

for the A/D converters is sourced from the SRC-6E general-purpose I/O port via opera-

tions built into the FPGAs. These operations, or macros, can route and multiply the

SRC-6E clock signal. The SRC-6E has an internal clock which operates at 100 MHz.

Through multiplication, the clocking signal can easily double to 200 MHz

3. Signals Provided to the SRC-6E from the A/D Converters

Depending on the mode of operation, the A/D converters provided the following

signals to the SRC-6E: I primary, I secondary, Q primary, Q secordary, Data Ready,

PRF and AGC.

a. I and Q Primary and Secondary Signals

In the 100-MHz mode, the A/D converters sample the I and Q channels

and provide an 8-bit signal for each channel at a sampling rate of 100 MHz. These 8-bit

signals are called I primary and Q primary, respectively. When sampling at 200 MHz,

the A/D converters represent each channel with two 8-bit signals. While the I and Q

channel information is sent to the SRC-6E at 100 MHz, the effective data rate is 200

MHz. The four signals are referred to as I primary, I secondary, Q primary, and Q sec-

ondary. The A/D converters sampled the radar signals at 100 MHz for testing throughout

this tt-sis.

b. Data Ready Signal

The Data Ready signal is essentially the clock used by the A/D converters.

When the Data Ready signal transitions from low-to-high (voltage), the data presented on

the other signals is valid. This signal was used to capture valid data for storage. Data

Ready is a 1-bit signal and originates from the A/D converters.
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c. PRF

The PRF signal within the A/D converters is a level- shifted version of the

PRF signal from the AN/SPS-65(V)1. The AN/SPS-65(V)l PRF signal was level-

shifted and fed directly in the SRC-6E as a 1-bit signal.

d. AGC

The AGC signal is the sampled version of the AGC signal from the radar

system. As with the I and Q channels, the AGC signal from the A/D converters are two

8-bit signals, AGC primary and AGC secondary. Both the primary and secondary signals

are used if the A/D converters are sampling at 200 MHz and only the primary signal at

100 MHz.

4. Voltage Representation of the Radar Signals

The relative strength of the radar signal return is captured as a voltage level within

the AN/SPS-65(V)1. Objects which reflect a greater portion of the radar pulse are repre-

sented with a higher voltage level on the I and Q channels of the radar than those with a

lesser reflectivity. The A/D converters represent the sampled voltage level with 8-bits.

This provides 256 discrete levels which represent the input voltage from the radar.

The most negative value of the input voltage is represented by 0, the voltage

maximum by 256, and the zero voltage level by 128. Given a 5-volt peak-to-peak input

sine wave, the voltages +2.5 v, 0 v, and -2.5 v would be represented by 255, 128, and 0,

respectively, with eight bits. This format for representing data is also known as offset bi-

nary.

Once the 8-bit representation has been sampled and stored in the SRC-6E, it must

be converted again to reproduce the actual voltage presented to the A/D converters by the

AN/SPS-65(V)1. This was done with the following equation where the signal voltage is:

s[V] =a(b-128). (2.1)

The constant a is a simple scaling factor used to reconstruct the actual voltage

level at the time of sampling and b is the 8-bit value. Using Eq. (2.1), it possible to rec-

reate both the positive and negative voltage levels sampled from the radar.

The voltage conversion equation above will be used in later chapters as part of the

radar signal processing. The signals presented by the AN/SPS-65(V) 1 to the A/D con-
6



verters are also used in the processing of the radar signals in the SRC-6E general-purpose

reconfigurable computing platform. An adequate discussion of the image processing

must take into account the platform on which the processing took place. An exploration

of that platform is the subject of the next chapter.
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HI. THE SRC-6E SYSTEM

A. INTRODUCTION

In this project, the A/D converters and the radar system ultimately connect to the

SRC-6E. The sampling, storing, and a portion of the processing of the radar signal will

be done within the SRC-6E. The means by which the processing takes place is the

subject of following chapters. Those discussions, however, must be based on an

understanding of the hardware, software, and programming environment of the SRC-6E.

That is the subject of this chapter.

B. SRC HARDWARE ENVIRONMENT

As mentioned in the introduction, the SRC-6E is a general-purpose

reconfigurable computing platform. The SRC-6E contains two Intel® processing systems

and one Multi-Adaptive Processing (MAP®) board [5] containing four FPGAs.

1. Microprocessor Side of the SRC-6E

The microprocessor side of the SRC-6E is composed of two general-purpose

personal computers (PC). Each PC has two Intel Pentium® III processors. We used only

one of the general-purpose computers. As with most PCs, there is a memorybus

connecting various components within the system. The interconnect between the

microprocessor and MAP side of the SRC-6E is done via a SNAPTM card interface that

connects the microprocesor memory bus to one half of the MAP board [6]. Memory

transfer between the microprocessor side and the MAP side can be accomplished through

standard Direct Memory Access (DMA) methods [5] across this interconnect. Memory

space on the microprocessor is Common Memory, as programs running on the

microprocessor or the MAP can access it [6].

2. MAP Side of the SRC-6E

The MAP board is composed of two MAP processors. Each MAP processor is

composed of two FPGAs, associated memory, and the required control circuitry to im-

plement the functionality of the MAP processor.

9



a. MAP Connectivity

As described above, one of MAP processors (MAPO) is connected to a

microprocessor via a SNAP interconnect. The second MAP processor (MAPI) is con-

nected to the second microprocessor system [7]. Individual MAP processors, MAPO and

MAPI in this example, each have an input and an output chain port. A chain port is a

connection used to connect two or more MAPs together in a daisy chain. Through user-

developed macros, a chain port can be converted into a general-purpose I/O port [8].

Intel® Processors Intelf Processors

Mem. IBus A Mem] Bus B

1 1

Port Port

C Controll C Control C
a. oa] a a oa a

Sn n

0 0 0 0

r r r r
t MAPO Processor t MAP Processor t

Figure 1. Internal components of the SRC-6E.

While a chain port and a general-purpose I/O port are physically tlr same

device, they are functionally different. The general-purpose I/O port function is used to

connect a MAP system to some external device. Chain ports connect MAPs to other

MAPs. The port which the A/D converters connect to the SRC-6E is a general-purpose

I/0 port.
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Each general-purpose I/O port has a collection of I/O pads. This is where

physical contact between the A/D converters and the SRC-6E takes place. The specfic

connection names between these to systems is outlined in Appendix B.

b. MAP Memory

MAP functions (program fragments running on the MAP) can access the

memory resident on the MAP. One component on a MAP is the On Board Memory

(OBM) as shown in Fig. 1. There is a total of 24 MB of memory on an individual MAP.

The 24 MB is divided evenly between six banks, each of 4 MB. A single bank of OBM

is conceptually organized as a two-dimensional array where each element is 64 bits wide.

The maximum number of elements in a single OBM bank is 523,776. The organization

of OBM memory allows for the access of multiple (six) memory locations on each clock

cycle. This aspect of memory access within the MAP facilitates parallel processes. [5,

6].

C. SRC-6E SOFTWARE ENVIRONMENT

The SRC-6E software components were designed to abstract the details of the

hardware system itself from the general programmer. When writing programs designed

to take advantage of the FPGAs, a programmer can code in either FORTRAN or C [6].

The main program should call on functions which have been ported over to the MAP to

take advantage of the potential speed-up an FPGA offers. It is up to the individual pro-

grammer to determine which aspect of a program would benefit, in terms of speed, by

running on an FPGA. The C language was used on the microprocessor and MAP side

functions of the SRC-6E throughout this thesis.

A program that is executed on the MAP side is written as a C function and is

called a MAP function. The main program, running on the microprocessor side, calls and

passes data in a manner similar to that of regular function calls in C.

MAP functions, while written in C, are converted to a Hardware Description

Language (HDL) by the SRC-6E compiler. Compiling C to HDL is accomplished

through a series of SRC-6E defined macros. These system-defined macros are segments

of code that provide the abstraction from system hardware that programmers have come
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to expect in modem systems. Programmers can, however, extend the range of

functionality provided by system-defined macros by creating user-defined macros. These

user-defined macros must be written in an HDL, such as VERTLOG or VHDL. While

MAP functions cannot call upon other functions, they can explicitly call on user-defined

macros.

The user-defined macros developed in Chapter IV were 'written' orginally as

circuit diagrams. These circuit diagrams were automatically converted into VHDL and

then ported into the SRC-6E programming environment.

This chapter, in summary, outlined the basic hardware and software components

of the SRC-6E. Memory, DMA, microprocessor side, MAP side, MAP functions, and

macros are all concepts upon which this thesis is built. It is now possible to begin the

discussion of the various elements developed to accomplish the thesis objectives. The

next chapter is a discussion of the macros developed to interface the logical components

of the SRC-6E and A/D converters.
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IV. BUILDING A MACRO IN THE SRC-6E ENVIRONMENT

A. INTRODUCTION

As mentioned in Chapter III, a macro within the SRC-6E is a section of code

written in a HDL that allows the programmer to define special tasks for MAP functions

to call upon MAP functions cannot call other functions as is possible in a C program-

ming environment. MAP functions call on a collection of system-defined and/or user-

defined macros to accomplish special-purpose tasks.

User-defined macros allow the programmer to extend the range of applications for

MAP functions from what is provided by the system-defined macros. Programming a

user-defined macro requires knowledge of digital logic design, an HDL language (or

symbology), and possibly a set of tools to allow for the generation of HDL code from a

macro schematic.

This chapter outlines the process taken to create a series of macros that, in turn,

allowed for the collection of radar signals for processing in the SRC-6E. To further ex-

plain the macros created in this thesis, a discussion of the different types of macros and

how a macro is interfaced in the SRC-6E is required.

B. MACROS TYPES AND INTERFACING PROGRAMS AND
PROGRAMABLE COMPONENTS IN THE SRC-6E

Within the SRC-6E MAP programming environment, there are five types of mac-

ros [6]. Of these five, two were used in this thesis, the purely functional macro and ex-

ternal macro.

1. Purely Functional Macros

Purely functional macros are called and then return a value or values to the calling

MAP function. Such macros do not have any state values. These macros can be pipe-

lined such that they can accept new input data while internally processing the results from

previous input values [6].

Since the radar processing interface works at the internal clock speed of the SRC-

6E MAP, 100 MHz, it is important that any macro developed operate at that clock speed.
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A significant feature of purely functional macros is that they can be pipelined and exe-

cuted in parallel to maximize clocking efficiency with respect to data input.

2. External Macros

External macros interact with parts of the system beyond the code block in which

it operates [6]. It was initially thought that these types of macros would be required to in-

terface with the A/D converters to retrieve data presented on the general-purpose I/O

port. This turned out to be incorrect. It was, however, not discovered until later in the

macro development cycle and is covered in more detail later in this chapter.

External macros require an implicit start and done signal added to the macro code

as well as the black box file (see Section 3.a). The start and done signals are system con-

trol signals that facilitate the passing of system control to and from an external macro.

The start signal is initiated by the SRC to the external macro indicating that the external

macro should begin execution. The done signal originates in the macro and indicates to

the SRC that it has completed execution

3. Macro-to-MAP Function Interface

In order to facilitate compilation of MAP function calls of macro code, two user-

defined files characterize the nature of the interface. These files are called 'black box'

and 'info' within SRC documentation [6].

a. Black Box Files

Black box files are a description of the macro inputs and outputs from the

perspective of the MAP function and SRC-6E system-defined signals. An example of a

SRC defined signal would be the clock signal, labeled CLK in Fig. 2. No other function-

ality of the macro is revealed in the black box file. Figure 2 contains a typical black box

schematic of a macro, while Fig. 3 contains the actual coding used to represent it.

IFD

Figure 2. Black box diagram of a macro.
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module bitin (CLK, IN1);
input CLK;

output IN1;

endmodule

Figure 3. Black box file written in Verilog HDL.

Notice that the K9 input signal shown in Fig. 2 is not included in the black

box file in Fig. 3. As mentioned above, a black box file is written from the perspective of

a MAP function and system-defined signals. In Fig. 2, the signal INI is returned to the

calling MAP function. For this example, assume the input K9 is not a standard system

signal, like CLK, and is not provided by a MAP function to the macro. As such, the sig-

nal K9 is not written into code in Fig. 3.

If the K9 input was included in the black box file, the SRC-6E compiler

would attempt to connect the input to essentially a random MAP function variable

defined in the black box file. This system- induced connection then causes ambiguity in

the circuit connections and a resulting compiler error.

This SRC-induced nuance is counterintuitive when thinking of black box

descriptions in general. Discovering this nuance took several weeks of research and it is

mentioned here in hopes that follow-on research will benefit from this discussion.

b. Info Files

Info files establish the mapping of operators and calls in the MAP function

to the macro signal names [6]. The info file defines the name of the macro to be called,

the type of macro (pure functional, external, or one of the other three types), the macro

latency, and other characteristics of the macro.

Figure 4 is the info file code required for the macro dia gram shown in Fig.

2. It defines the macro as not stateful and not external. As a result, the macro type de-

faults to functional. The info file characterizes the macro as taking one clock cycle to

execute (latency). Further, the macro canbe pipelined. There are no inputs and there is

one output which is one bit wide. The macro also uses the standard SRC-6E system sig-

nal 'clock.' Once again, the input K9 was not defined in the info file for the same rea-

sons that it was not defined in the black box file.
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BEGIN DEF "bitin"

MACRO = "bitin";

STATEFUL = NO;

EXTERNAL = NO;
PIPELINED = YES;

LATENCY = 1;

INPUTS = 0:

OUTPUTS = 1:

00 = INT 1 BITS (IN1)

INSIGNAL: 1 BITS "CLK" " CLOCK";
END DEF

Figure 4. Sample info file.

C. MARCO DEVELOPMENT FOR RADAR IMAGE RETRIEVAL

Initially, a macro was to be written to provide:

* 16 bits of I channel data to the MAP function from the A/D converters.

* 16 bits of Q channel data to the MAP function from the A/D converters.

• 16 bits of AGC data to the MAP function from the A/D converters.

* 1 bit of PRF data to the MAP function from the A/D converters.

* A Data Ready signal to the components within the macro from the A/D
converters.

* A doubled SRC-6E system clock signal from the macro to the A/D con-
verters. For various reasons, this was later changed to 100 MHz while
maintaining the capability to double the clock speed.

* Synchronization of the clock domains between the SRC-6E and the A/D
converters in order to minimize clock skewing problems.

Macro development that would accomplish the above points was decomposed into

two subcategories, writing data out of and reading data into the SRC-6E system across a

general-purpose I/O port.

All macros were drawn as schematics and then automatically translated by the

Xilinx® application Project Navigator, release version 6.2.03i, into VHDL code. The re-

sultant code was then imported as a macro file into the SRC-6E programming environ-

ment. For the purposes of this thesis, macros will be represented by schematics for sim-

16



plicity. As the schematics are logic circuits, the term circuit will be used synonymously

with the term macro. Pad names follow the conventions set forth in the connectivity dia-

grams in Appendix B.

1. Data/Clock Out of the SRC-6E

Figure 5 is the schematic that was used to generate the clock signal out of the

SRC-6E at 100 MHz via a Digital Clock Manager (DCM). It was initially thought that,

since this macro would interface with elements outside of the code block, the macro must

be defined as external. This turned out later to not be the case and subsequent versions of

the clock output macro were defined as purely functional.

In Fig. 5, the clock output cannot be fed directly to a Xilinx pad but must first be

buffered by an output buffer. For this experiment, an OBUFF24 was used which pro-

vides a fast slew rate and drive power of 24 mA for a low voltage transistor-transistor

logic (LVTTL) pad [9]. The BUFG, Global Clock Buffer [9], provides a tap point for the

clock feedback line. The clock feedback circuitry synchronized the clock output of the

DCM (CLKO) to the clock input into the DCM (CLK). The START/DONE elements of

the circuit served to fulfill the SRC-6E requirements for external macros.
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Figure 5. Initial clock output macro/circuit.
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Using this macro and a digital oscilloscope, the voltage output from the SRC-6E

was recorded as shown in Fig. 6. The clock provided by the SRC-6E is a 100-MHz

square wave, but due to imperfect impedance matching and the poor frequency response

of the observing equipment, the clock signal appears sinusoidal.

Tek Run: 2.OOGS/s Sample
[ .. ... .. ... .. ... ... .. ... .. ... .. 7 . ... ... ... ... ... ... ..... ... ... .. ... .. ...

C1 High

Cl Low
-1.84 V

C1 Freq
99.076MHz

t 2.00V MS.0Ons Chi.Y 1.56V 6Jan 2041

21:39:33

Figure 6. 100-MHz clock output using externally defined macro.

With subsequent experiments, the clock speed could be manipulated to nearly any

desired value when using flip flops or counters. The DCM, provided by Xilinx, has a

feature called synthetic frequency division which is supposed to divide the frequency of

the signal. It was found, however, that synthetic frequency division via the DCM did not

work. SRC documentation supported this finding [10]. Whether this is an artifact of the

Xilinx implementation of a DCM, an SRC implementation of a Xilinx FPGA, or a com-

bination of the two is unknown to this author.

2. One-Bit Data Input Into the MAP of the SRC-6E

After establishing an output clock, reading data as variables into the SRC-6E re-

mained. While the eventual goal was to read upwards of 25-50 data pins, initial efforts

focused on simply reading one bit at a clock rate of 100 MHz and storing that data for

analysis.

A purely functional macro schematic was created as shown in Fig. 7. The macro

stores the logic value from the pad into an I/O D- flip flop on every positive edge from the

SRC-6E system clock. Once stored, the data is presented on the output labeled INI.

Through the interfaces defined in the info and black box files, INI was read in as a 32-bit
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integer variable, sign extended as a 64-bit integer, and stored as a 64-bit element in an

OBM bank on the MAP. Once several thousand samples were collected, the OBM bank

contents were transferred via a DMA transaction to the microprocessor side and either

displayed on screen or stored as a file for later analysis.

IFD...........................................................

Figure 7. One-bit input macro.

The input pad, T12, was connected to a function generator during the tests. The

function generator created a square wave signal operating at 1 kHz between at the ranges

of logic values 1 and 0 for LVTTL circuitry with at 50% duty cycle. For a given cycle in

the square wave at 1 kHz and a sampling rate of 100 MHz, there were approximately 50

logic Is and 50 logic Os in the output file. This indicated that the input signal was sam-

pled and stored at a rate of 100 MHz.

3. Multiple Bit Input into the SRC-6E

Working from the techniques defined in the one-bit input example, a two-bit- in-

parallel input macro was created but proved not to function properly. As mertioned ear-

lier, the one-bit input signal was implicitly read as a 32-bit integer before being sign ex-

tended into a 64-bit element in an array. The 'expansion' of the one-bit signal to a 64-bit

variable was done implicitly by the SRC compiler with system-defined macros. This im-

plicit process did not seem to be supported by the compiler for signal values two or four

bits wide. Signal values of eight, 16, and 32 bits were properly converted to 64-bit vari-

ables by the compiler.

Eventually, an encompassing macro was developed to read two 8-bit I channel

words, two 8-bit Q channel words, a one-bit PRF signal, and a one-bit Data Ready signal.

The I and Q channel bits were defined as a single 32-bit integer variable. The least sig-

nificant 16-bits represented tlr I channel information while the remaining bits represent

the Q channel information as shown in Table 1 below.
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Table 1. Data division of input signals.
Q Channel I Channel

Bits represent Q secondary Q primary I Secondary I primary
Bit positions 31:24 23:16 15:8 7:0

This purely functional macro was tested and operated as expected.

4. Combining Clock Output with Data Input in a Macro

The next step in the macro development process was to combine the externally

defined clock output macro with the purely functional data input macro. The resultant

circuit would effectively become an externally defined macro. Upon testing this circuit,

however, the sampling- and- storage rate dropped to approximately 10 MHz.

Externally defined macros actually operate in a code block that is separate from

the MAP function. When the MAP function called the external macro, control of the sys-

tem was passed to the macro. When the macro finished, control was passed back to the

MAP function. This passing of system control incurred a severe performance penalty of

90%. The external definition was removed and the sampling-and- storage rate returned to

100 MHz.

The macro finally developed to read and write data from the A/D converters inter-

face to the SRC-6E is fully described pictorially and in VHDL in Appendix C.

D. TESTING THE RADAR INTERFACE MACRO

While testing of the macros continued throughout the design process, only the fi-

nal design testing process is discussed here.

1. Test Equipment Setup

The I channel primary connection from the A/D converters were connected to the

SRC-6E per the tables in Appendix B. Instead of the AN/SPS-65(V)I connected to the

A/D converter interface, a signal generator emitting a 1-kHz sine wave with a 200-mV

peak-to-peak swing was connected. The macro in Appendix C running at a sampling

rate of 100 MHz was used to sample the data from the A/D converters.

2. Test Results

Figure 8 depicts the results of the SRC-6E sampling a sine wave input which was

saved as a file and then plotted. Figure 8 depicts the first 1000 samples of the 500,000
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samples taken and the voltage level recorded for each sample. Over the 500,000 samples

there was a 1.90% error rate, where an error is any sampled voltage level outside the ex-

pected input voltage range. In this case, the expected voltage range was ±100 mV. The

source of this error was not determined, as it was not significant for the purposes of this

thesis. At a sampling rate of 100 MHz, it was expected that a single cycle of a 1-kHz

sine wave would take 100 samples. This supposition was supported by the findings

shown in Fig. 8.

1 kHz Sine Wave Input
250

2006-------------------- ------------- ----------------- ------ ------

160

1 0 -- t-- -- - - -*--- - -.-- --- -- -- ,-- -- ,-- --- ,- -- --- -- --- -

100 ----- -- - --- .... -- --- '- - - ------- ------ -----

S-30 1-.'-- + J.. _ ___. __ [___, _ _L _ __ .. +_ + ...S ._L. 1 __ _ _ _ _ _._ _ _'___

i V A... .... ..... ..... .. . ... A .. __
-60 T 'T 4--;

-100 --- so -- -'-- --- - -

0 1O0 200 300 400 500 600 700 800 900 1000
Sample #

Figure 8. Sampling of a 1-kHz sine wave input to the A/D converteis and
sampled at a rate of 100 MHz.

Given the 1.90% error, the sine wave was adequately sampled to reproduce the

wave itself and this test was seen as a proof of a functioning macro as well as the A/D

converters.

The sampling of the A/D converter signal was the culminating point for the sig-

nificant portion of the macro development for this thesis, which started with exporting the

of the SRC clock to the A/D converters. With the development of a functioning sampling

system, the data collected must be manipulated in such a way as to produce accurate ra-

dar imagery. To do this, the raw, sampled radar signals must be processed using basic

radar theory, as described in the next chapter.
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V. BASIC RADAR SIGNAL GENERATION THEORY AND THE
AN/SPS-65(V)l

A. INTRODUCTION

Sampling and storing the I and Q channel information was a major portion of this

thesis work, as described in Chapter IV. With the creation of an adequate sampling inter-

face to the AN/SPS-65(V)1, the next step was to process the data captured. This chapter

outlines basic radar signal generation theory applicable to many radar platforms. Build-

ing on this theory is a detailed discussion of the AN/SPS-65(V)I operation

B. BASIC RADAR IMAGE GENERATION THEORY

A radar system has two basic components, a transmitter and a receiver. The trans-

mitter generates high power, short duration pulses which are radiated by the antenna.

Once transmission of the pulse ends, a sensitive antenna mounted receiver collects trans-

mitted pulse reflections for a period of time. When using a rotating antenna, this process

is repeated many times as the antenna sweeps through an entire revolution.

From the transmitter, the high energy pulse travels, for the purposes of this thesis,

at the speed of light, c = 3.0 x108 rn/s. As the pulse collides with objects along the

transmission path, some of the pulse energy is reflected off the object. A portion of this

reflected energy travels back along the transmission path and is detected by the receiver.

This detected signal is then sampled, stored, and/or processed.

The distance, d, that the object is from the radar can be determined by the fo r-

mula:

d =-. (5.1)

2

The variable t is the round trip time of the signal.

This general method was used to generate a basic range map of a sampled analog

signal coming from the AN/SPS-65(V)1 radar. Prior to discussing the signal processing

on the SRC-6E, a few facts about the radar system used must be explored.
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C. AN/SPS-65(V)l AND RADAR THEORY

1. Basic Radar Theory Applied to AN/SPS-65(V)l Characteristics

The AN/SPS-65(V)l operated at a pulse repetition frequency (PRF) of 3,064

transmitted pulses per second. Each transmitted pulse has a width of 7 Pis. The transmis-

sion and reception of the pulse occurs on a rotating antenna, where ra = 4 seconds per ro-

tation.

The PRF period, TPRF, the time between pulses, is given by:

T 1 1

rPRF - P -3 - 32.637 pts. (5.2)PRF 3064

Using Eq. (5.1), and inserting TPRF for time, the effective detection distance of the radar

is summarized in Table 2. The theoretical range of the signal is dther.

Table 2. Effective theoretical range of the AN/SPS-65(V)1.
I km miles nautical miles

Range 48.956 30.43 26.46

Given the PRF and ra of the AN/SPS-65(V)1, the total number of pulse intervals

per revolution (PPR) is calculated by:

PPR = PRF. r = (3,064) (4) = 12,256 pulses (5.3)
rev

2. AN/SPS-65(V)l Pulse Width and Timing

The AN/SPS-65(V)l uses a trigger signal to initiate the transmitted pulse. The

pulse rate of this signal, as described above, was 3,064 pulses per second for all experi-

ments. At the start of, and initiated by, the trigger signal, the transmitter begins to trans-

mit and the receiver turns off. The transmitter transmits for 7 ps , after which the trans-

mitter turns off and the receiver turns on. After TPRF, the trigger signal goes high and the

cycle repeats. During this process, the antenna is rotating 360° every four seconds. Thus,

the angle rotated through for a given TPRF is the angle per pulse (APP):

APP = 360° - 360 = 0.02940/pulse. (5.4)

PPR 12,256
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Given basic radar theory applied to the characteristics of the AN/SPS-65 (V) 1, a

number of values were determined throughout this chapter. These values are summarized

in Table 3.

Table 3. Figures of interest for Chapter V.
PRF [Hz] r,, [s per rev] IPPR [pulse/rev TPRF [PiS]I dther [kN]MI APP [2/pulse]

3,064 0.25 12,256 i -32.64 48.96 0.029

These calculated values are used when sampling the data with the programs writ-

ten on the SRC-6E. As will be shown in the next chapter, the values in Table 3 are im-

portant in the creation of a radar signal processor.
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VI. RADAR SIGNAL PROCESSING WITH THE SRC-6E

A. INTRODUCTION

As shown in Chapter V, the analog radar signal is generated as a result of recep-

tion of a reflected radar pulse. The received analog radar signal is then fed through a se-

ries of amplifiers and filters and presented in analog form on the I and Q channels for

digital conversion [3]. The I and Q channel voltage level are then digitized into a series

of 8-bit digital signals at a rate of 100 MHz. The A/D converters, in turn, present the

digital data signals to the SRC-6E general-purpose I/O port. The macros described in

Chapter IV read the digital signals in at 100 MHz and present the signals as a variables

for storage and/or processing.

At this point, the processing of the retrieved radar signals begins. The objective

of this chapter is to describe the radar signal processing methodologies explored in the at-

tempts to generate a range map. This chapter will examine the sampling rate used, the ie-

sultant data rate incurred, the physical characteristics of the SRC-6E, and the program-

ming means used to process the radar signal given the SRC-6E environment.

B. SAMPLING OF THE ANALOG I CHANNEL SIGNALS

To build a range map, it is only necessary to analyze information from one of the

channels. As such, in the remainder of this discussion we focus onprocessing the I chan-

nel information exclusively.

1. Sampling Rates of the A/D Converter and SRC-6E

As mentioned before, the A/D converters operate off the digital clock from the

SRC-6E. The clock rate output of the SRC-6E is 100 MHz. The A/D converters sample

the radar output (I and Q channels) at the SRC-provided clock rate of 100 MHz [2]. The

data from the A/D converters is brought into the SRC via the macro interface described in

Chapter IV. The data presented by the macros can be sampled by the MAP functions at a

rate of up to 100 MHz. It is important to distinguish between the sampling rate and the

storage rate.
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2. Ideal Sampling and Effects on Data Rates and Storage Requirements

Referring back to Chapter V, the radar signal is divided into a series of distinct

time periods. Within each time period, TPRF, a 7-jis pulse is transmitted and thenthere is

a period of time where the receiver collects reflected energy from the pulse. As shown in

Eq. (5.2), the total time takes 32.637 ý.s and is delimited by trigger signals. There are

32,637 samples per pulse (SPP) repetition as calculated by:

SPP = (32.637 las) (100 MHz) = 32,637. (6.1)

As the radar output is being sampled at 100 MHz, the range bin of each sample represents
a distance of 1.5 m as shown by:

Range Bin = dthe = 48,956 = 1.5 m. (6.2)
SPP 32,637

The voltage level of the sampled signal is represented as eight bits. As such, it is

possible to determine the ideal data rate, which is 32,637 bytes per pulse. This equates to

a data rate of -100 MBps, given the PRF. To store every sample at the ideal rate for one

revolution of the antenna, it would take 400 MB of storage capacity.

3. SRC-6E Available Data Rates and Storage Capacity

The macro provides the sampled data to a MAP function every clock period.

Therefore, the data either has to be stored or processed before being lost. There are two

possible storage locations within the SRC-6E, the microprocessor side or the MAP side.

To store information to the microprocessor, the data must be streamed via a DMA

operation across the internal SNAP port. Unfortunately, the sustained data transmission

speed of the SNAP port from MAP to microprocessor is 195 MBs [7]. While this is ade-

quate for just I primary channel data, it would be insufficient for the transmission of I

secondary and Q primary and secondary information which would quadruple the data

bandwidth. In addition, streaming the data in this manner would bypass the potential ad-

vantages of performing the processing on the FPGA in the MAP.

This leaves the MAP for the storage and/or processing of the I primary channel

information. As described, a single-side FPGA within the MAP has 24 MB of memory

divided evenly between six banks of memory. In order to use the parallel processing ca-

pabilities of the MAP, only two, or ideally, one bank of memory should be used to store

28



data at a time. This leaves the remaining banks of memory free to process previously

stored data or for the transfer of data to the microprocessor concurrent to memory storage

from the macro. This self-imposed restriction leaves one 4-MB bank of memory avail-

able for the storage. At SPP from Eq. (6.2), it would take approximately 122 pulses to

fill a bank of memory. Using Eq. (5.4), for the APP, this would be a radar sweep of

-3.5°. Clearly this is inadequate when attempting to generate a range map for an entire

radar sweep of 3600.

C. STRATEGIES TO MINIMIZE STORAGE REQUIREMENTS OF THE

RADAR IMAGE

In the course of this thesis, two basic strategies were considered in minimizing the

storage requirements while retaining the capacity for parallel execution. Those strategies

were centered on limiting the number of samples stored and, paradoxically, not storing

the samples at all. The next two sections discuss these strategies in detail.

1. Limiting the Number of Samples Stored

The main focus of this strategy was to maintain a storage rate of 100 MHz but

limit the range of samples actually stored. The overall goal of this approach was to limit

the number of samples stored to 500,000 samples, the approximate number of elements in

a single bank of OBM. By storing several samples in a single array element, data pack-

ing, eight 8-bit words were stored in a single 64-bit element. Using data packing, it

would be possible to store up to 4M samples. Due to coding complexity and time con-

straints, tIr data packing approach was not explored. There were, however, a number of

approaches considered that limit the number of samples stored.

a. Limit the Range of Sampling

Instead of storing the entire effective range of the radar, as shown in Table

3, it was thought that by limiting the range, the storage requirements would be mini-

mized. To accomplish this, only a limited number of samples would actually be stored

from every pulse

If only one sample per pulse per revolution of the antenna was stored,

12,256 elements of memory would be required. If 40 samples per pulse per revolution

were stored, it would require 490,024 storage elements, slightly less than the 500k ele-
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ments per bank. Using data packing, it would be possible to store 320 samples per pulse.

Each stored sample, per Eq. (6.2), represents 1.5 m in range. With data packing, the

stored range of the radar would be 480 m and without packing, 60 m. This method se-

verely limited the stored range of radar signals and was abandoned as a viable approach.

b. Limit the Arc Stored

As shown in Eq. (5.4), each pulse represents -0.03° along the entire sweep

of the radar antenna. By chaining together PPR, the entire 360° image is generated. By

skipping pulses, the entire effective range could be stored while minimizing the storage

capacity required. Each pulse requires SPP number of elements per Eq. (6.1). In terms

of storage, 120 pulses with data packing, and 15 without data packing, could be stored in

a single bank of OBM. Given pulse storage skipping, each stored pulse would represent

a 32- or 242- sweep of the antenna with respect to data packing. At best, this is a loss in

arc resolution of 100 times that provided by the AN/SPS-65. This approach was also

abandoned due to the limited arc resolution.

2. Storing a Representation of the Sampled Signal

Limiting the number of samples stored via limiting the range, arc resolution, or

some combination was not viable when attempting to compress the data into one un-

packed bank of OBM. An alternate strategy is to store a representation of the signals

rather than each signal value [11].

a. Averaging a Range of Sampled Values

This method focused on simply averaging the returned voltage levels over

a number of samples and storing the average. To represent dther for 360° in a single

OBM, it would require the averaging blocks of 800 samples. The majority of the sam-

pled values were at or near 0 V and reflected images were typically small in scale with

values around 20 mV.

Using averaging, the majority samples would tend to dominate the results.

This tended to drive the average value below the noise threshold where it was difficult to

determine whether there was an actual reflected radar signal. Per Eq. (6.2), a returned ra-

dar image would need to be at least 600 m long before significantly affecting the radar

image using averaging. Recalling the purpose of the AN/SPS-65(V)1, averaging would
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provide adequate detection of missiles and aircraft exceeding 600 m in length Without

reference to actual threat sizes, it was quickly determined that averaging was an inade-

quate method.

b. Summing a Range of Samples for Storage

Instead of storing the average value, the sum of values was stored. By

adding together 700 samples, it was nearly possible to store the complete range for one

full rotation of the antenna in a single, unpacked bank of OBM. A block of 700 samples

represents 7 p s of time which corresponds to 1.05 km per Eq. (5.1). By summing the

sampled values, actual targets were not lost in the sampling method as was with the aver-

aging method.

Summing 700 samples alone was not adequate to meet the unpacked OBM

bank size requirement. Each pulse is sampled SPP times. As sampling is continuous

throughout this process, the first 700 samples after the PRF trigger signal do not contain

useful information. This corresponds to the transmission of pulse in which the receiver is

shut off. This leaves SPP- 700 = 32,637 - 700 = 31,937 samples of interest to represent

radar returns between the PRF trigger.

By summing every 700 samples, there are 45.62 sample blocks per pulse.

This means there would be -46 elements to store for each pulse of the radar. Given the

PPR, it would take 45.62. PPR ý 559,119 samples to represent one revolution worth of

data. This is clearly too large to fit in an unpacked single bank which at maximum

(MOBM), 523,776 64-bit elements long [6].

Given MOBM/PPR = 42.74 = 42, 42 is the maximum number of sample

blocks per pulse that would fit in an unpacked OBM bank. At 700 samples per block,

each pulse would be represented by 29,400 samples at 100 MHz. The effective range of

this storage system would be 44.1 km for an entire revolution of the antenna and an arc

resolution of -0.03°. Using this process for storing the radar return information, it is pos-

sible to represent radar returns from 1.05 to 45.15 km. Table 4 shows these values and

then compares them to the theoretical ranges from Table 3. Comparing this methodology

to the theoretical range, there is a difference of 4.86 km. This methodology is appeared

to be a likely candidate for storage of the radar range information.
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Table 4. Effective range using summation compared to theoretical
range.

km miles Nautical Miles
Start 1.05 0.65 0.57
End 45.15 28.06 24.41

Elf. Range 44.10 27.41 23.84

Theory 48.96 30.43 26.46
Difference 4.86 3.02 2.62

The expressed goal of this chapter was an examination of the methodology

used to generate a range map from the generated radar returns. In the course of this ob-

jective, the ideal sampling rate was shown to exceed the storage capacity in the SRC-6E.

Two strategies to circumnavigate this limitation were explored. The resulting strategy

stores a radar image in such a way to allow for parallel processing within the FPGA.

This final method coupled summation of samples with range limitation. The following

chapter is an examination of code and the data collected using derivatives of the summa-

tion/range restriction technique.
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VII. PROCESSED RADAR SIGNALS AND ANALYSIS OF
RESULTS

A. INTRODUCTION

The last chapter examined, in detail, the various factors which shaped the radar

signal processing approach This chapter discusses methods used to process the radar

signals from the ANSPS-65(V)1. The methods used here divided the signal processing

between three separate coding environments: the MAP functions, the SRC microproce s-

sor, and MATLAB® code. The goal of the initial attempt was two- fold, to verify correct

operation of the sample-and- store system and to validate the coded processing environ-

ment in conjunction with a 'live feed' from the ANSPS-65(V)1.

B. CODE USED TO STORE AND PROCESS RADAR RETURNS

The programming code used to sample-and- store the raw data was done within a

MAP function. The stored data was then transferred to the microprocessor side of the

SRC-6E where limited processing occurred prior to being saved as a text file. The text

file was imported into MATLAB for static processing.

This coding method departs slightly from the methods described in Chapter VI.

The departure is due to the goals of the initial coding test, to prove the sampling system

works and perform limited radar processing on stored data. In this manner, the code was

not optimized with respect for parallel processing on the FPGAs.

The sampling of data from the A/D converters occurred via a macro (see Chapter

IV) called by a MAP function described below. The MAP function was called, in turn,

by a microprocessor function which stored the data returned by the MAP function to a

file.

Figure 9 shows an abbreviated version of the C-language program used on the

microprocessor- side of the SRC-6E to initiate the sample- and- store process. The com-

plete and actual code used can be found in Appendix D, which contains SRC-6E- specific

code. This program defines several arrays and then calls a MAP function, STRBITIN, to
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fill the arrays with sampled data. The returned data is then translated from A/D converter

values to actual voltage levels as described in Eq. (2.1). This converted data is then

saved in a file 'output.txt'.

#include<stdio.h>

void strbitin (, // Function Definition

int main () I

FILE *outfilep;

outfilep = fopen ("./output.txt","w"); // Output file name

int i; // Loop counter
long long *Ipri; // I primary channel data

long long *Isec; // I secondarychannel data
long long *Qpri; // Q primary channel data

long long *Qsec; // Q primary channel data
long long *PRF; // PRF data

// Call to the MAP function: start bit input

strbitin (Ipri, Isec, Qpri, Qsec, PRF);

// Print the results in the arrays to a file

int tIp, tIs, tQp, tQs;

for (i=O;i<MAXOBM SIZE;i++) I

tIp = (Ipri[i]--128)* 1.95; // Voltage conversion scale

tIs = (Isec[i] -128)* 1.95; // Voltage conversion scale

tQp = (Qpri[i] -128)* 1.95; // Voltage conversion scale
tQs = (Qsec[i] -128)* 1.95; // Voltage conversion scale

fprintf(outfilep,"%-7d %-4d %-4d %-4d %-4d %-411d\n",

i, tIp, tIs, tQp, tQs, PRF[i]); //Print arrays

// End for (i=O;i<MAX .

return (0);

// End main.c

Figure 9. Code used in main.c.

Figure 10 shows a compressed version of the code presented in Appendix D.2. In

this MAP function, the macro 'bitin' is called. Bitin is the macro developed in Chapter

IV. This macro returns one 32-bit integer, radarSig, and one 1-bit integer, PRF. The

variable radarSig is the composed of four 8-bit integers, each representing the I and Q

primary and secondary channels. PRF is the signal that originates from the AN/SPS-

65(V)1, indicating the triggered beginning of a radar pulse as described in Chapters II
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and V. The MAP function, STRBITIN, collects data from the macro, unpacks the data,

and stores it in a separate array. As shown in the Appendix D.2, each array is actually a

bank of OBM memory.

* Thesis: Interface 32 bits input to main.c, four 8-bit and one 1-bit
* variable out to calling program.
.

* Macro Called: bitin. This macro samples 33 data lines and
* returns the values to this function.
.

* Programs calling this function:
* Pass by reference five 64-bit integer element length arrays
* -500,000 elements long.
.

* This function then splits out the 32 bit input returned by the
* macro bitin into four arrays where each array represents:
* A = I primary channel information = bits 7:0
* B = I secondary channel information = bits 15:8
* C = Q primary channel information = bits 23:16
* D = Q secondary channel information = bits 31:24

* E = PRF information from a separate variable
* When an array is filled to MAX OBM SIZE, the OBM banks are
* passed back to the calling function.

void strbitin (long long A[], long long B[], long long C[],
long long D[], long long E[l)

int radarSig, PRF, i; // storage var, stor var, counter

out = 55; // Initialize out

for (i=0;i<MAXOBM SIZE;i++)

bitin(&radarSig, &PRF); // Get data from pin(s)

// Variable Out packed with four variables. Unpacking here.
A[i] = radarSig & Ox00000000000000ff; // I prim
B[i] = (radarSig & OxOOOOOOOOOOOOffOO) >> 8; // I sec
C[i] = (radarSig & OxOOOOOOOOOOffO000) >> 16; // Q prim
D[i] = (radarSig & OxOOOOOOOOffO00000) >> 24; // Q sec
Eli] = PRF; // PRF

} // End for (i=0;i<MAX
} // End strbinin

Figure 10. MAP function STRBITIN used to store data from the macro
bitin.

The data stored by main was then imported into MATLAB. The complete code

for this is included in Appendix D.3. The MATLAB code performed the basic process-
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ing described in Chapter VI, Section C.2.b, without the range limitation. Also, the plot in

Fig. 11 was generated via MATLAB.

C. TESTING OF CODE AND GENERATED IMAGE

With the code described in the section above, all the necessary components to test

the SRC-to-radar interface were implemented and ready for evaluation

1. Test Setup

a. ANISPS-65(V)l System Setup

The AN/SPS-65(V)I antenna returned a signal along a fixed azimuth ap-

proximately true north of the antenna position. The only values returned to the I and Q

channels were readings along this fixed azimuth.

b. AID Converter Setup

An A/D converter was connected to the radar I channel provided by the

AN/SPS-65(V)1. The converter only provided the 8-bit I primary channel data. The

A/D board was physically connected to the SRC via the general-purpose I/O port within

the SRC-6E.

C. SRC and Signal Processing Setup

Using the macro developed in Chapter IV and the code discussed in this

chapter, an executable program was run several times. Each time, a collection of data

samples were stored for later processing. A series of approximately 16 transmit/receive

cycles (pulse interval) were recorded and processed along the fixed azimuth path. Since

this setup does not store an entire antenna revolution worth of data, there were no range

restrictions imposed by the processing method. Recorded ranges, using this method,

should correspond to the values shown in Table 3.

2. Results

An analysis of the output file directly shows that there were 32,639 samples be-

tween the start of trigger signals. Compared to SPP, this is a sampling error of 0.006%

from the expected SPP. The sampling system closely matched the PRF signal expecta-

tions.

Figure 11 shows a plot of the processed information as captured with the system.

The plot is the summation of voltage values returned by the radar system compared to the

36



range in kilometers. In addition, the summation of the trigger signal, PRF, was plotted.

When the PRF transitions from low to high, 0 to 20,000, it is an indication of the begin-

ning of a transmitted pulse by the AN/SPS-65(V)1. From there, the range calculations

began.

x 104 AN/SPS-65 Radar Return via SRC-6E processor

- Y I Channel Signal
10 * Y- PRF

E

Ir

ca

5-

3-

5 10 15 20 25 30 35 40 45
Range (kmn)

Figure 11. Processed radar image.

At approximately 40 km, there is the beginning of a large radar return. Figure 12

shows the distance from the antenna position to the Santa Cruz Mountain range. This

distance is shown to be approximately 40 km, suggesting that this is the source of the re-

turn. (Figure 12 was generated with the Department of Defense geological information

system standard program ESR1f ArcMap, version 8.3, and data generated by the Mon-

terey Bay Aquarium Research Institute with the assistance Arlene Guest, Senior Lecturer,

Department of Oceanography, Naval Postgraduate School.)
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Monterey Bay Range Calculations

• •. Radar beam
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Figure 12. Range from the Naval Postgraduate School (NPS) to Santa
Cruz Mountains.

The apparent success served as the capstone to the material of this chapter which

outlined the programs developed to process a radar signal Also, the radar signal process-

ing was tested and evaluated against real world data. The results of which satisfied the

expressed objectives of this the sis work as noted in the conclusion, Chapter VIII.
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VIH. CONCLUSION

A. SUMMARY

The objective of this thesis was to build a software interface to the AN/SPS

65(V)1 that would allow for the limited processing of radar signals. The intricacies of the

various systems used, the radar, the A/D converters, and the SRC-6E, were discussed in

order to provide a basis for understanding the thesis work.

The thesis work focused on three major constructs: macro development, radar tlr-

ory and image processing, and programming and testing a radar processing device. The

macro development progressed sequentially along two lines, clocking and data input.

Eventually, the two lines of development were merged to form a cohesive macro which

provided a unified software interface to the A/D converters for later radar processing.

The radar processing research explored a variety of processing options. For vari-

ous reasons, as described above, a number of the processing options were abandoned. A

suitable processing method was discovered and used as a basis for the developed soft-

ware system.

The programmed radar processor spanned three environments: the SRC MAP

function, microprocessor-based processing, and a third program that provided a static dis-

play of the radar signal. By integrating the various components, a radar image was sam-

pled, stored, processed and displayed. As shown in Chapter VII, the system implemented

accurately reported on received radar returns.

B. SUGGESTED FUTURE WORK

While this thesis work completed the objectives, there were still uncompleted pro-

ject goals. Namely, sophisticated radar processing software was not implemented and the

potential advantages of reconfigurable computing were not demonstrated fully as outlined

in the project objectives.

The software developed here was simply a tool to prove or disprove the correct

functioning of the A/D converters, the SRC-6E general-purpose I/O ports, macros, and

associated software to sample and store radar signal data. The implemented software
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lacks the sophistication of modem radar signal processing systems. The system built can

be greatly improved to provide a robust suite of radar processing techniques.

The system implemented in this thesis did not fully demonstrate the potential ad-

vantages that reconfigurable computing is reported to offer. It is possible that the system

developed could process not only one type of radar, but multiple radar systems in a nearly

simultaneous manner. The feasibility of this supposition is one which could be further

explored by harnessing the inherent parallelism that a reconfigurable computing platform

offers. Chapter VI provides a possible framework from which that research could start.

Despite the limitations described in this section, a viable software interface to a

radar system was developed and tested. The skills called uponto do this encompassed:

* General circuit theory and design.

* Logic circuit theory and design.

* Familiarization with several programming languages (C, VHDL,
MATLAB).

* Basic and advanced programming topics such as function calls and paral-
lel processing.

* Basic radar theory and design.

* Basic radar processing.

* Signal processing.

* Timing analysis of circuits, logic, and programmed code.

* Thorough working knowledge of the general reconfigurable computing
platform used.

* Working knowledge of logic circuit design tools.

The suggested future work would require, in addition to this skill set, an internm-

diate understanding of signal processing and radar theory.
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APPENDIX A: TRADEMARKS

Several terms used throughout this thesis are trademarked. This appendix is a list

of trademark terms used in this document.

Intefl is a registered trademark of the Intel Corporation.

ISE, or Integrated Software Environment, is a trademark of Xilinx, Inc.

"MAP® is a registered trademark of SRC Computers, Inc.

MATLAB® is a registered trademark of The Mathworks, Inc.

SNAPTM is a trademark of SRC Computers, Inc.

Virtex®-JI is a registered trademark of Xilinx, Inc.

Xilinx® is a registered trademark of Xilinx, Inc.
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APPENDIX B: CONNECTIVITY DIAGRAMS

The following appendix is a copy of the pin- out configuration of the Xilinx Virtex

II showing the pad names and the respective connections and name on the A/D boards

provided. The first table is a connectivity diagram from the perspective of the physical

layout of the pins. The second table rearranges the information into a data view perspec-

tive. Both tables contain essentially the same information, but in views that proved use-

ful during the programming and configuration portions of the thesis.

Table 5. Physical view of the pin-out connections.
Mictor/Physical View

Breakout Mictor Xilinx Breakout Mictor Xilinx
Board Pin Pad Board Pin Pad

DOO 1 U12 D57 58 F1

DOI 2 T12 D58 59 G1

D02 3 M2 D59 60 G5

D03 4 N2 D60 61 HE

D04 5 Rll D61 62 K8

DOE 6 TIll D62 63 J8

D06 7 P8 D63 64 F3

D07 8 N8 D64 65 G3

D08 9 M3 D65 66 H7

D09 10 N3 D66 67 H6

DIO 11 ME D67 68 N12

Dli 12 NE D68 69 M12

D12 13 RIO D69 70 E2

D13 14 PIO D70 71 F2

D14 15 KI D71 72 FS

DiE 16 LI VALO 73 G6

D16 17 L4 FULL 74 Mll

D17 18 M4 VALI 75 L12

D18 19 P9 VAL2 76 E4

D19 20 N9 VAL3 77 F4

D20 21 L3 VAL4 78 El

D21 22 L6 NC 1 79 F20

D22 23 M6 SPRO 80 NOT CONN

D23 24 R12 SPRI 81 D2

D24 25 P12 SPR2 82 E3

D25 26 J2 SPR3 83 B4

D26 27 K2 SPR4 84 C4

D27 28 J4 SPRE 85 C6

D28 29 K4 SPR6 86 CE

D29 30 MS SPR7 87 E8
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Mictor/Physical View

Breakout Mictor Xilinx Breakout Mictor Xilinx
Board Pin Pad Board Pin Pad

D30 31 L8 SPR8 88 F8

D31 32 HI IDAT 89 AS

D32 33 Ji ICLK 90 A4

D33 34 L7 DCLK 91 B6

D34 35 M7 I-DO 92 BS

D35 36 Pll I-Di 93 Hll

D36 37 Nil PRST 94 H12

D37 38 D1 MRST 95 C8

D38 39 F19 PRO 96 C7

D39 40 NOT CONN PR1 97 E7

D40 41 KS PR2 98 D8

D41 42 J6 PRS 99 ElO

D42 43 K6 RSVD 100 E9

D43 44 NIO BNKO 101 NOT CONN

D44 45 M1O BNKi 102 NOT CONN

D45 46 H3 BNK2 103 JlO

D46 47 J3 BNK3 104 HIO

D47 48 G4 SEGO 105 Jill

D48 49 H4 SEal 106 GIO

D49 Eo M9 SEG2 107 G9

DSO 51 L9 SEG3 108 F9

D5l 52 G2 NC 2 109 NOT CONN

D52 53 H2 NC 3 110 NOT CONN

D53 54 J7 NC 4 ill NOT CONN

D54 55 K7 NC 5 112 NOT CONN

DEE 56 LIo WR CLK 113 NOT CONN

D56 57 K9 MST CLK 114 NOT CONN
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Table 6. Data view of the pin-out configuration.
Data View

Breakout I Mictor Pin Xilinx Pad 0 Mictor Pin Xilinx Pad Breakout
D00 10 1 U12 Least Sig Q0 2 T12 D01

D02 I1 3 M2 Q1 4 N2 D03

D04 12 5 R11 Q2 6 T11 D05

D06 13 7 P8 Q3 8 N8 D07

D08 14 9 M3 Q4 10 N3 D09

D10 15 11 M5 Q5 12 N5 D11

D12 16 13 R10 Q6 14 P10 D13

D14 17 15 K1 Most Sig Q7 16 Li D15

D16 8 17 L4 Least Sig Q8 18 M4 D17

D18 19 19 P9 Q9 20 N9 D19

D20 110 21 L3 Q10 22 L6 D21

D22 Ill 23 M6 Q11 24 R12 D23

D24 112 25 P12 Q12 26 J2 D25

D26 113 27 K2 Q13 28 J4 D27

D28 114 29 K4 Q14 30 M8 D29

D30 115 31 L8 Most Sig Q15 32 H1 D31

Breakout AGC Mictor Pin Xilinx Pad Misc. Mictor Pin Xilinx Pad

D33 AGCO 34 L7 Least Sig Clock Out 79 F20

D35 AGC1 36 P11 Clock In 39 F19

D37 AGC2 38 D1 PRF In 57 K9

D39 AGC3 40 NOT CONN

D41 AGC4 42 J6

D43 AGC5 44 N10

D45 AGC6 46 H3

D47 AGC7 48 G4 Most Sig

D49 AGC8 50 M9 Least Sig

D51 AGC9 52 G2

D53 AGC10 54 J7

D55 AGC11 56 L10

D57 AGC12 58 F1

D59 AGC13 60 G5

D61 AGC14 62 K8

D63 AGC15 64 F3 Most Sig
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APPENDIX C: MACRO DEVELOPED

Chapter IV outlined the creation of a macro which would sample the signals pro-

vided by the A/D converters. What follows is a series of schematics and VHDL code

used for the final macro developed.

This schematic is an overall view of the schematic used. The scale of this scir-

matic is such that not all the details are immediately visible. The following schematics in

this appendix provide a detailed view of the various sections.

Q Channel I Channel

IFD IFD IFD IF D

SPRF -----

Clock Into SRC from ND I..

SRC Clock ... o"m

Figure 13. Overview of the macro developed.
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Q Channel
IFD IFD

IFD IFD

IFN IFD5'

IFD IFD

IFN IFDý

IFD IFD

IFD IFD

IFD IFD

IN 1.72) IN ,.W

Figure 14. Q Channel inp)uts and outputs.
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IFD I Channel
IN 1*~ IN Imx-

IFD IFD

--INl IN Ia)

PS

IFD IFD

IFD7 IN IFD)

IFD IFD

IFD IFD

IFD IFD

IN 1 IN i035

IFD IFD

0.02 IN 1.113

1FD IFD
0-K.) I1116

Figure 15. I channel inputs and outputs.
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PRF
IFD

Figure 16. PRF signal input and output. Also the output marker for the I
and Q channels.

, LOC=F1 9 "-.

IBUF

Clock Into SRC from A/D

Figure 17. Data Ready Signal interface.
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DCM
SRC Clock

>-a. OLKINCLf

BUFG

> LKFB .LK9 -

0 UF270

o LK, _

OBUF_F_24

0 LF2X I1f0

OLKDV

OLKFX . LOC=F20

C LKFX 1SJ

____--___CHAININB_OLK>

DOMRST ý WST LOOKED -

CTATUCL7 Ml

PSEN

IPSLK0 PODONE

Figure 18. DCM portion of the macro.
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-- VHDL model created from C:\Xilinx\virtex2\data\drawing\ifd.sch - Sun

Jan 30 12:48:11 2005

library ieee;

use ieee.std logic_1164.ALL;
use ieee.numeric std.ALL;
-- synopsys translate off

library UNISIM;

use UNISIM.Vcomponents.ALL;

-- synopsys translate on

entity IFD MXILINX in33 is

port ( C : in stdlogic;
D : in stdlogic;

Q : out stdlogic);
end IFD MXILINX in33;

architecture BEHAVIORAL of IFD MXILINX in33 is
attribute INIT STRING

attribute BOX-TYPE STRING

attribute IOB STRING

attribute IOSTANDARD STRING

signal DIN : stdlogic;

signal XLXN_1 : stdlogic;
signal XLXN 2 : std logic;

component FDCE

-- synopsys translate off
generic( INIT : bit := '0');

-- synopsys translate on

port ( C : in std logic;

CE : in std logic;

CLR : in std logic;

D : in std logic;
Q : out std logic);

end component;
attribute INIT of FDCE : COMPONENT is "0";

attribute BOX-TYPE of FDCE : COMPONENT is "BLACK-BOX";

component IBUF

port ( I : in stdlogic;

0 : out std logic);

end component;
attribute IOSTANDARD of IBUF : COMPONENT is "LVTTL";
attribute BOX-TYPE of IBUF : COMPONENT is "BLACK-BOX";

component VCC

port ( P : out std logic);

end component;
attribute BOX-TYPE of VCC : COMPONENT is "BLACKBOX";

component GND
port ( G : out std logic);

end component;

attribute BOX TYPE of GND : COMPONENT is "BLACK BOX";
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attribute lOB of 136_15 : LABEL is "TRUE";

begin
136_15 : FDCE

port map (C=>C, CE=>XLXN_2, CLR=>XLXN 1, D=>DIN, Q=>Q);

I 36 24 : IBUF

port map (I=>D, O=>DIN);

136_26 : VCC
port map (P=>XLXN_2);

136_29 : GND
port map (G=>XLXN1);

end BEHAVIORAL;

-- VHDL model created from in33.sch - Sun Jan 30 12:48:11 2005

library ieee;
use ieee.std logic_1164.ALL;

use ieee.numeric std.ALL;

-- synopsys translate off
library UNISIM;

use UNISIM.Vcomponents.ALL;

-- synopsys translate on

entity in33 is

port ( Clk : in std logic;
DCMRST : in std logic;

F19 in std logic;
Hi in std logic;

J2 in std logic;

J4 in std logic;

Ki in std logic;

K2 in std logic;

K4 in std logic;

K9 in std logic;
Li in std logic;
L3 in std logic;

L4 in std logic;

L6 in std logic;

L8 in std logic;

M2 in std logic;
M3 in std logic;

M4 in std logic;
M5 in std logic;
M6 in std logic;

M8 in std logic;

N2 in std logic;

N3 in std logic;

N5 in std logic;
N8 in std logic;

N9 in std logic;

P8 in std logic;
P9 in std logic;
Pi0 in std logic;

P12 in std logic;
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Ri0 in std logic;
RII in std logic;

Ri2 in std logic;

TIl in std logic;

Ti2 in std logic;

Ui2 in std logic;

CHAININBCLK out std logic;

IN1 out std logicvector (31 downto 0);
PRF out std logic);

attribute LOC : STRING '

attribute LOC of Fi9 SIGNAL is "Fi9";

attribute LOC of Hi SIGNAL is "Hi";

attribute LOC of J2 SIGNAL is "J2";
attribute LOC of J4 SIGNAL is "J4";

attribute LOC of Ki SIGNAL is "Ki";

attribute LOC of K2 SIGNAL is "K2";
attribute LOC of K4 SIGNAL is "K4";

attribute LOC of K9 SIGNAL is "K9";

attribute LOC of Li SIGNAL is "Li";

attribute LOC of L3 SIGNAL is "L3";

attribute LOC of L4 SIGNAL is "L4";

attribute LOC of L6 SIGNAL is "L6";
attribute LOC of L8 SIGNAL is "L8";

attribute LOC of M2 SIGNAL is "M2";

attribute LOC of M3 SIGNAL is "M3";

attribute LOC of M4 SIGNAL is "M4";

attribute LOC of M5 SIGNAL is "M5";

attribute LOC of M6 SIGNAL is "M6";
attribute LOC of M8 SIGNAL is "M8";

attribute LOC of N2 SIGNAL is "N2";
attribute LOC of N3 SIGNAL is "N3";

attribute LOC of N5 SIGNAL is "N5";

attribute LOC of N8 SIGNAL is "N8";

attribute LOC of N9 SIGNAL is "N9";

attribute LOC of P8 SIGNAL is "P8";

attribute LOC of P9 SIGNAL is "P9";

attribute LOC of Pi0 SIGNAL is "Pi0";
attribute LOC of Pi2 SIGNAL is "Pi2";
attribute LOC of Ri0 SIGNAL is "Ri0";

attribute LOC of Rul SIGNAL is "R1";

attribute LOC of Ri2 SIGNAL is "Ri2";

attribute LOC of Tii SIGNAL is "Tii";

attribute LOC of Ti2 SIGNAL is "Ti2";
attribute LOC of Ui2 SIGNAL is "Ui2";

attribute LOC of CHAININBCLK SIGNAL is "F20";
end in33;

architecture BEHAVIORAL of in33 is

attribute BOX TYPE STRING

attribute CLKFEEDBACK STRING

attribute CLKDV DIVIDE STRING
attribute CLKFXDIVIDE STRING

attribute CLKINPERIOD STRING

attribute CLKFX MULTIPLY STRING
attribute CLKINDIVIDE BY 2 STRING
attribute CLKOUT PHASE SHIFT STRING

attribute DESKEW ADJUST STRING
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attribute DFSFREQUENCY MODE STRING
attribute DLL FREQUENCY-MODE STRING

attribute DSS MODE STRING

attribute DUTY CYCLE CORRECTION STRING

attribute PHASE SHIFT STRING

attribute STARTUP WAIT STRING

attribute HU SET STRING

attribute IOSTANDARD STRING
signal LD std logic;

signal XLXN_355 std logic;
signal XLXN_356 std logic;

signal XLXN_606 std logic;

component BUFG
port ( I in stdlogic;

O out std logic);

end component;
attribute BOX-TYPE of BUFG : COMPONENT is "BLACK-BOX";

component OBUF F 24
port ( I in stdlogic;

O out std logic);

end component;
attribute BOX-TYPE of OBUFF_24 : COMPONENT is "BLACK BOX";

component DCM

-- synopsys translate off

generic( CLKFEEDBACK string := "IX";

CLKDV DIVIDE real := 2.000000;
CLKFXDIVIDE integer := 1;

CLKINPERIOD real := 0.000000;
CLKFXMULTIPLY : integer := 4;

CLKINDIVIDEBY_2 boolean false;

CLKOUTPHASESHIFT string "NONE";

DESKEW ADJUST : string := "SYSTEM SYNCHRONOUS";

DFSFREQUENCY MODE string "LOW";

DLLFREQUENCY MODE string "LOW";

DSSMODE : string "NONE";
DUTYCYCLECORRECTION boolean := true;
PHASE-SHIFT integer 0;

STARTUP WAIT boolean false);

-- synopsys translate on

port ( CLKFB in stdlogic;

CLKIN in stdlogic;
DSSEN in stdlogic;

PSCLK in stdlogic;
PSEN in std logic;
PSINCDEC in stdlogic;

RST in std

Figure 19. VHDL code of developed macro.
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APPENDIX D: CODE USED IN THESIS

1. COMPLETE MAIN.C SAMPLE AND STORAGE OF RADAR SIGNAL

#include<stdio.h>
#include<libmap.h> // New lib to facilitate map calls

#include <map.h> // New lib to facilitate map calls

void strbitin 0; // Function Definition

int main () I

FILE *outfilep;
outfilep = fopen ("./oS30Jan5M.txt","w"); // Writing to file

int nmap, mapnum,i; // New Number of maps, map # to be used, loop

long long *Ipri; // I primary channel data
long long *Isec; // I secondarychannel data

long long *Qpri; // Q primary channel data
long long *Qsec; // Q primary channel data
long long *PRF; // PRF data

Ipri = (long long*) Cache Aligned Allocate (MAX OBE SIZE*sizeof(int64 t));

Isec = (long long*) Cache Aligned Allocate (MAX OBMSIZE*sizeof(int64 t));
Qpri = (long long*) Cache Aligned Allocate (MAX OBMSIZE*sizeof(int64 t));

Qsec = (long long*) Cache Aligned Allocate (MAX OBMSIZE*sizeof(int64 t));
PRF = (long long*) Cache Aligned Allocate (MAX OBE SIZE*sizeof(int64 t));

mapnum = 0;

nmap = 1;

// allocate map to this problem. Get a map ready

if (map allocate (nmap)) I

fprintf (stdout, "Map allocation failed.\n");

exit (1);

// End if (map .

// Call to the MAP function: start bit input
strbitin (Ipri, Isec, Qpri, Qsec, PRF, mapnum);

if (map free (nmap)) I

printf ("Map deallocation failed. \n");
exit (1);

// End if (map .

// Print the results in the arrays to a file

int tIp, tls, tQp, tQs;

for (i=0;i<MAX OBE SIZE;i++)

tIp = (Ipri[i] -128)* 1.95;
tls = (Isec[i] -128)* 1.95;

tQp = (Qpri[i] -128)* 1.95;
tQs = (Qsec[i] -128)* 1.95;

fprintf(outfilep,"%-7d %-4d %-4d %-4d %-4d %-411d\n",
i, tIp, tls, tQp, tQs, PRF[i]); //Print arrays

// End for (i=0;i<MAX . .

return(O);
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2. MAP FUNCTION START BIT INPUT

lThesis: Interface 32 bits input to main.c, four 8-bit and one 1-bit

variable out to calling program.

Tom Guthrie 24 Jan 05

This function calls a macro. The macro samples 33 data lines and

returns the values to this function.

This function then splits out the 32 bit input into four OBM banks

where:

Bank A = I primary channel information = bits 7:0
Bank B = I secondary channel information = bits 15:8

Bank C = Q primary channel information = bits 23:16
Bank D = Q secondary channel information = bits 31:24
Bank E = PRF information from a separate variable

When filled to MAX OBM SIZE, the OBM banks are passed back to the
calling function.

#include<libmap.h> // New lib to facilitate map calls

void strbitin (long long AL], long long B[], long long C[],

long long D[l, long long EL], int mapnum)

int out, out2, i, temp; // storage var, stor var, counter, temp var

OBM BANK A (AL, int64 t, MAXOBM SIZE) // I primary
OBM BANK B (BL, int64 t, MAXOBM SIZE) // I secondary

OBM BANK C (CL, int64 t, MAX OBM SIZE) // Q primary
OBM BANK D (DL, int64 t, MAXOBM SIZE) // Q secondary
OBM BANK E (EL, int64 t, MAX OBM SIZE) // PRF
out = 55; // Initilize out

for (i=0;i<MAX OBM SIZE;i++)

bitin(&out, &out2); // Get data from pin(s)
// Variable Out packed with four variables. Unpacking here.

AL[i] = out & 0x00000000000000ff; // I prim
BL[i] = (out & 0x000000000000ff00) >> 8; // I sec

CL[i] = (out & 0x0000000000ff0000) >> 16; // Q prim
DL[i] = (out & 0x00000000ff000000) >> 24; // Q sec
EL[i] = out2; // PRF
// End for (i=O;i<MAX .

temp = MAX OBMSIZE*sizeof(int64 t); // Here to facilitate DMA->CM.

// is the length of the entire
// array.

// Transfer the I primary channel data array back to calling program
DMA CPU (OBM2CM, AL, MAPOBM stripe(1,"A"), A, 1, temp, 0);
wait DMA (0);

// Transfer the I secondary channel data array back to calling program.
DMA CPU (OBM2CM, BL, MAPOBM stripe(1,"B"), B, 1, temp, 0);

wait DMA (0);
// Transfer the Q primary channel data array back to calling program.
DMA CPU (OBM2CM, CL, MAPOBM stripe(1,"C"), C, 1, temp, 0);
wait DMA (0);
// Transfer the Q secondary channel data array back to calling program.

DMA CPU (OBM2CM, DL, MAPOBM stripe(1,"D"), D, 1, temp, 0);

wait DMA (0);
// Transfer the PRF data array back to calling program.
DMA CPU (OBM2CM, EL, MAP OBM stripe(1,"E"), E, 1, temp, 0);
wait DMA (0);

// End strbinin
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3. MATLAB CODE USED TO TEST SAMPLED DATA

% Thesis Test Data

% Tom Guthrie

% Date: 24 Feb 05

clear; close all;

% Get data from input file for processing and graphing

% The input file name varies depending on the sample

% taken.

BlkSz - 700;

numBlk - 47;

% w & x used to select a range of samples.

w - 198992; % Start range

x w + BlkSz*numBlk; % End range

% 523776 - MAX OBM SIZE

load -ASCII oR4Febkf.txt % File to be loaded

i - oR4Febkf(w:x,1); % Sample number

Ipri - oR4Febkf(w:x,2); % I primary channel voltage

%Isec - oR4Febkf(w:x,3); % Not used in this example

%Qpri - oR4Febkf(w:x,4);

%Qsec - oR4Febkf(w:x,5);

PRF 100 * oR4Febkf(w:x,6); % PRF signal

% Scaled for plot

% visibility.

% Summing the raw data values of the radar system.

% This loop sums every BlkSz samples then stores it

% in a one dimensional array. The I primary

% voltage level and the PRF are targets for the

% the summation process.

% The outer loop (q) divides the number of samples

% samples (i) into blocks which are BlkSz long

% samples long. The inner loop sums the BlkSz

% values which are stored in sumI and sumPRF.

% sumPRF is scaled previously by a constant to make it

% highly visible in subsequent plots. Notice the

% summation is of the absolute voltage value of

% the I primary voltage. In this coding example,

% i - sample number, I - Ipri - voltage level of

% of the I channel.

temp - 0; % Temporary storage variables

temp2 - 0;

for q - 1:numBlk

for r - 1:BlkSz

temp - temp + abs(Ipri((q-1)*BlkSz+r));

temp2 - temp2 + abs(PRF ((q-l)*BlkSz+r));

end

sumI(q) - temp;

sumPRF(q) - temp2;

temp - 0; % Reset the temp variables

temp2 - 0;

end

kmpBlk - BlkSz 1.5/1000;

mpBlk - kmpBlk 0.6215;

nmpBlk - kmpBlk 0.540541;

Rkm - linspace(1, kmpBlk * numBlk, numBlk); % Range km

Rm - linspace(1, mpBlk * numBlk, numBlk); % Range miles
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Rnm - linspace(1, nmpBlk * numBlk, numBlk); % Range naut. miles

figure;

plot(Rkm, sumI, Rkm, sumPRF, 'r*');

axis tight;

xlabel('Range (km)');

ylabel('Processed Radar Return');

title ('AN/SPS-65 Radar Return via SRC-6E processor');

legend('\Sigma I Channel Signal','\Sigma PRF',2);

grid on;

figure

plot(Rnm, sumI, Rnm, sumPRF, 'r*');

axis tight;

xlabel('Range (nautical miles)');

ylabel('Processed Radar Return');

title ('AN/SPS-65 Radar Return via SRC-6E processor');

legend('\Sigma I Channel Signal','\Sigma PRF',2);

grid on;

figure

plot(Rm, sumI, Rm, sumPRF, 'r*');

axis tight;

xlabel('Range (miles)');

ylabel('Processed Radar Return');

title ('AN/SPS-65 Radar Return via SRC-6E processor');

legend('\Sigma I Channel Signal','\Sigma PRF',2);

grid on;
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